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Abstract The piezoelectric ultrasonic actuator, a recent de-

velopment in the field of ferroelectrics, has led to applications

in a wide range of industries. These actuators have proven to

outperform their electromagnetic counterparts of mm-order

diameters and below, and the demand for such devices in

high power applications continues to increase. The perfor-

mance of such motors, in particular, those of tubular form,

are governed by two key material properties, the mechanical

quality factor, Qm and the piezoelectric constant, d31. This

paper presents experimental results showing that the factor,

Qm × d31, indeed governs the performance of such motors.

In the present work, tubes of various materials and geome-

tries are characterized in terms of resonance frequency, the

dynamic bending displacement, and the vibration velocity. A

comparison is made showing a possible dependence of ma-

terial constants, Qm and d31 on the geometry of the tube, as

well as the input electric field. The derivation of the consti-

tutive relationships has been carried out and compared to the

experimental results. The geometric dependence of material

property data indicates the need for a possible relationship

linking these properties to the geometry. The second part of

the work presents experimental data verifying the relation-

ship between the material properties Qm and d31, with the

geometry of the material and the input electric field.
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1 Introduction

Piezoelectrics belong to a class of materials which exhibit

deformation in response to an external electric field, a phe-
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nomenon first observed in 1880 by Jacques and Pierre Curie

[1]. In recent years, ultrasonic actuators of tubular form have

been developed, which outperform their electrostatic coun-

terparts at sizes of mm-order dimensions and below [2]. The

focus of this work is to develop relationships between actua-

tor performance and the material properties, and secondly,

to understand how the material properties scale with the

geometry, thereby paving the way for development towards

miniaturized applications.

Piezoelectric ultrasonic transducer performance is a func-

tion of two key material properties, the piezoelectric constant,

d31, which governs the strain per unit of voltage input to the

material, and secondly, the mechanical quality factor, Qm .

The piezoelectric effect arises from electric dipoles in the

material, and neighbouring dipoles tend to align with each

other, forming regions of local alignment, or Weiss domains,

resulting in a net polarization. Both lattice deformation of in-

dividual grains, and the changes in the ferroelectric domain

populations contribute to the piezoelectric response [3]. The

domain walls have a significant influence on the properties

of PZT ceramics [4]—under the application of an electric

field, domain walls move so as to minimize domain energy.

The result is a change in the domain structure (size, shape

and population), and therefore a change in the net strain and

polarization [5].

A piezoelectric material may be doped with small quan-

tities of a donor dopant to create metal (cation) vacancies

in the crystal structure. This facilitates domain wall motion

thereby improving its piezoelectric properties (such as the

piezoelectric d constant) [6], but at the expense of the me-

chanical quality factor, Qm , whose physical meaning can be

defined as the reciprocal of the internal friction of the dipoles

[7], or the damping in the material due mechanical loss such

as internal friction. Piezoceramics described as such are cat-

egorized as soft ceramics, while hard ceramics, on the other
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Fig. 1 Bending vibration of PZT Tube (L20 mm × OD10 mm ×
ID8 mm, fr = 51 kHz)

hand are doped with acceptor dopants, which create oxygen

(anion) vacancies in the crystal structure. In hard PZT, do-

main walls are pinned by impurities, whereas soft PZT is

characterized by mobile domain walls [8].

Kurosawa [2, 9] describes tubular-type actuators consist-

ing of a tube of piezoelectric material coated internally and

externally with a layer of electrode. The inner diameter of the

tube is coated with a single inner-electrode, and the outer-

electrode is quartered. Voltages applied to each of the four

outer electrodes are sinusoidal, each with a 90 degree phase

lag behind the other.

The bending motion of the piezoelectric tube causes a

point at the end of the tube to move in a circular fashion

(Fig. 1), and if a conical “end cap” contacts the tube at this

point, the rotational motion can be converted to useful output.

Under a “no slip” condition, the contact point of the “end cap”

will move at the same velocity as the point at the edge of the

PZT tube. Under this assumption, the rotational speed of the

motor (in rpm), is directly related to the bending displacement

and resonance frequency by the relationship [10]:

ωmotor = 60 frζ

rcontact

, (1)

where rcontact is the radius from the axis of rotation to the

point of contact between the tube and the “end cap,” fr is the

resonance frequency, and ζ is the bending displacement of

the tube. This “contact point” moves in a circular fashion and

the speed at which it moves is equal to the vibration velocity,

vv = ωr × ζ or 2π frζ , which is directly related to motor

speed.

2 Theory

The performance of a piezoelectric ultrasonic motor is gov-

erned by the performance of the piezoelectric tube (i.e., the

piezoelectric tubular transducer) and the vibration velocity

of the point on at the end of the tube sets the upper limit to

the speed of the motor. The vibration velocity, vv = 2π frζ ,

requires fr and ζ to be obtained, which may be derived from

the Timoshenko Beam Theory [2, 11–15]. In Timoshenko

beam theory, an element of the beam is modeled having a

transverse motion with a shear deformation and a rotation.

Under the action of a shear force, F , and a bending mo-

ment, M , a transverse displacement, ζ , and a rotation, ϕ, are

produced, and the element of density ρ deforms by an angle

γ . The equation of motion given by the Timoshenko model

is [15]:

Y E I
∂4ζ

∂x4
+ ρ A

∂2ζ

∂t2
− ρ I

(
1 + Y E

kG

)
∂4ζ

∂x2∂t2

+ρ2 I

kG

∂4ζ

∂t4
= 0 (2)

where the moment of inertia, I = π
64

(D4 − d4), A is the cross

sectional area, D and d are the outer and inner diameters, k
is the shape factor, and G is the shear modulus.

The solution to the Timoshenko beam model [12] is of the

form:[
ζ (x)

ϕ(x)

]
=

[
C1

D1

]
sin ax +

[
C2

D2

]
cos ax

+
[

C3

D3

]
sinh bx +

[
C4

D4

]
cosh bx (3)

where Ci , Di (i = 1 to 4), a and b are constants that can be

determined.

The boundary conditions for the free-free end conditions

are applied:

⎧⎪⎪⎨⎪⎪⎩
dζ

dx
− ϕ = 0 at x = 0, and x = 1

dϕ

dx
= 0 at x = 0, and x = 1

(4)

By doing so, it can be shown that the bending-mode reso-

nance frequency [15] is given by:

fr =
√

Y E
√

a2 − b2

2π L
√

ρ (5 + 3σ )
, (5)

where Y E is the Young’s Modulus, ρ is the density, and σ is

the Poisson’s ratio, and the wave numbers a and b are to be

obtained by solving the simultaneous equations by numerical

methods:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a2 − b2)(a2 + b2 + γ 2ab − ab)(a2 + b2 − γ 2ab + ab)

2ab(b2 + γ 2a2)(a2 + γ 2b2)

× sin a sinh b − cos a cosh b + 1 = 0 (6)

(γ 2b2 + a2)(γ 2a2 + b2)

(a2 − b2)(1 + γ 2)
= s2 = 16L2

D2 + d2

where γ = √
4 + 3σ , s is the shape factor, L is the tube

length, D and d are the outer and inner diameters respectively.
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Similarly, the formula for the bending displacement at

resonance [15] may be evaluated as:

ζ = Q
16d31V × l × (L − l) cos β

π (D2 + d2) ln D
d

(7)

where d31 is the piezoelectric constant, V is the voltage ap-

plied to the electrode, β is 45◦ (for a 4-electrode tube), l is

the distance from the nodal point to the end of the tube.

Here, the mechanical quality factor, Q, is defined as the

2π multiplied by the ratio of energy stored to the energy

dissipated per cycle. This is analogous to the spring-mass

damper system, where the ratio is given by:

Q = 2π
energy stored in the spring

energy dissipated per cycle

= 2π

1
2
mω2 X2[

1
2
cω2 X2

]
2π
ω

= 1

2ζ
(8)

where ζ is the damping ratio, m is the mass, c is the constant

of proportionality for the dashpot, X is the amplitude, and ω

is the frequency. Q is numerically equivalent to the ratio of

the displacement at resonance to the static displacement, and

may also be approximated by

Qm = fr/� f, (9)

where fr is the resonance frequency, and � f is the band

width at 3 dB corresponding to an amplitude reduction of

1/
√

2 in relation to the amplitude at resonance. The piezo-

electric equivalent circuit (consisting of a capacitor in par-

allel with a resistor, inductor, and another capacitor [16])

presents another analogy, with the mechanical quality factor,

Qm given by:

Qm = energy stored in a period (in L and C)

energy dissipated in a period (in R)
(10)

In this case, the sharpness of the resonance peak, Qm =
fr /� f , applies to the admittance maximum and not the dis-

placement maximum.

By substituting fr and ζ , into the vibration velocity equa-

tion, vv = 2π frζ , it can be shown that

vv = 16

π
(V cos β)

×
⎛⎝Qd31

√
Y E

ρ (5 + 3σ )

⎞⎠ (
L × l

L

(
1 − l

L

) √
a2 − b2(

D2 + d2
)

ln D
d

)
(11)

In this manner, the vibration velocity has been expressed in

terms of 3 parameters: V cos β, an electrical-related factor,

a materials-related factor,

Qd31

√
Y E

ρ (5 + 3σ )
, and

L × l
L

(
1 − l

L

) √
a2 − b2(

D2 + d2
)

ln D
d

,

a geometry-related factor. It should be noted that there

is some cross-coupling between the nodal point term,
l
L (1 − l

L ), and the wave number term,
√

a2 − b2, which de-

pend slightly on the Poisson ratio, σ . However, based on data

from commercial piezoelectric materials (APC International

Ltd, Boston Piezo Optics, Channel Industries, Morgan Elec-

troceramics, Piezo Kinetics, & Saint-Gobain Quartz), it was

found that assuming a Poisson Ratio of σ = 0.30, would

not affect the parameter, l
L (1 − l

L ), by more than 1% and
√

(a2 − b2) by 3%. The parameter, Qd31

√
Y E

ρ(5+3σ )
, is of par-

ticular interest because it isolates the material performance

from the geometry. By differentiating the vibration velocity

with respect to the voltage, we have:

dvv

dV
= 16 cos β

π
× Material Factor

× Geometric Factor (12)

and dvv/dV may then be plotted against the geometric factor

to obtain the experimental “material factor.”

3 Experimental procedure

PZT tubes of hard PZT-III and soft PZT-VI were obtained

from Boston Piezo Optics, who machined tubes from select,

void-free high quality raw PZT billets. The process used was

ultrasonic machining, whereby erosion of the material occurs

by means of fine abrasive grains in a slurry injected between

the workpiece and the tool [17]. The process is gentle on

the tube walls, minimizes surface imperfections, and does

not produce a heat-affected zone, nor does it cause any sur-

face chemical/electrical alterations. The tubes were obtained

from the vendor, poled with quartered electrodes on the outer

surface, and a single inner electrode.

The initial resonance frequency is calculated by formula

and verified by a HP4194A impedance analyzer. The PZT

tube is mounted horizontally at its nodal points using rub-

ber O-rings and sinusoidal voltages are applied by means of

a Yokogawa FG300 function generator which outputs two

sinusoidal waveforms, 90 degrees phase difference apart.

The output is coupled to 2 high voltage amplifiers (Trek

PZD2000) and these are connected to pairs of opposite-facing

electrodes on the piezoelectric tube. Non-contact bending

displacement measurement of the tube is measured by the
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MTI2000 Fotonic Sensor, and the displacement & frequency

output captured on an oscilloscope. A metallic foil placed on

the piezoelectric tube allows the displacement to be picked

up by the probe.

The vibration velocity was determined from vv = 2π frζ ,

and plotted against voltage for each tube. From the linear

portion of this curve (up to electric fields of about 100 V/mm

on average), the gradient dvv/dV is obtained, and plotted

against the geometric factor. By doing so, we wish to verify

that the dvv/dV vs. geometric factor plot is a straight line,

with the gradient being a constant that is proportional to

the material factor, and the constant of proportionality being

numerical equal to (16 cosβ)/π .

4 Results and discussion

A comparison of the normalized resonance frequency param-

eter, 2πLfr (ρ/Y E )1/2 as a function of the inverse of the shape

factor, 1/.s =
√

D2+d2

16L2 , is shown (Fig. 2).

The numbers listed refer to the dimensions of the tubes

(Length-OD-ID) in mm. A slight shift in the resonance fre-

quency is experienced as the voltage is increased, but this

shift is small enough that there is reasonable agreement be-

tween the experimental and theoretical values.

Vibration velocity vs. geometrical factor

The results for dvv/dV plotted against the geometric factor

for hard PZT (PZT-III) and soft PZT (PZT-VI) yielded linear

relationships (Fig. 3):

Each point is labeled with its dimensions in length-OD-
ID, together with the resonance frequency (as some material

properties may be frequency-dependent). Higher vibration

velocities are observed in hard PZT, due to lower internal

friction made possible by the pinning of domain walls (and

hence lower domain wall mobility). Tubes of hard PZT Navy
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Fig. 2 Theoretical & resonance frequencies of tubes of PZT-III &

PZT-VI

Fig. 3 dvv /dV vs. Geometric factor

Type III did not behave as expected, instead, dvv/dV appears

to be independent of the geometric factor. Soft PZT Navy

Type VI/High Density materials followed the relationship

more closely, with the linear y-intercept passing not too far

from the origin.

It is believed that the difference between the behavior of

hard and soft PZT comes from cross-coupling in either Q or

d31 with the other parameters. Other material properties, YE ,

ρ, σ are unlikely candidates due to the matching of the theo-

retical and experimental values of the resonance frequency,

fr . Since dvv/dV was obtained from the linear portion of

the curve, dependence of these coefficients on the electric

field as indicated by the Rayleigh Law (now also observed

in soft ferroelectric materials, [18–19]) is not expected to be

a factor. Both Q and d31 are functions of the domain wall

motion, which has shown to exhibit a frequency dependence

[20]. At large geometric factors, the resonance frequencies

are higher, switching time for domains to change could be

reduced [20], hence a reduced piezoelectric response.

5 Conclusion

The relationships derived for piezoelectric ultrasonic tubular

transducers indicate Qm × d31 as a primary material property

that relates to its performance (and in existing commercially

available materials, this value is largest in hard PZT). Experi-

mental verification of the resonance frequency is provided. A

relationship for the vibration velocity of piezoelectric tubu-

lar transducers has been proposed. Soft PZT followed the

linear trend predicted by this relationship, but the reasons

for the deviation in hard PZT are less clear, notwithstanding

the apparent independence of dvv/dV from the geometric

factor. Further analysis is proposed to obtain more data, to

determine the limits of the linear relationship, to develop an

explanation this phenomenon, and to determine if the effect

of frequency (due to a change in geometry) fully explains

the reasons for this phenomenon. If this is indeed caused by
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the frequency dependence of the domain wall mobility [20],

an understanding of how the material properties Qand d31

scales with the resonance frequency or the geometry of a

sample is important in the development of piezoelectric ma-

terial, particularly when a change in the form factor or size is

required. This result has wide-reaching implications because

if the apparent geometric independence in PZT-III extends

to miniaturized dimensions it will mean that applications at

a small scale would have the same high vibration velocities

as those on a much larger scale.
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